Commit b19e2b84 authored by dumoda01's avatar dumoda01

Distinction entre les taux de mortalite des differentes classes d'heterotrophes et d'autotrophes.

parent b0a803da
......@@ -27,8 +27,9 @@
! ka1 = half sat. constant ammonium uptake by fla [mmol n/m3]
! kn2 = half sat. constant nitrate uptake by diatoms [mmol n/m3]
! ka2 = half sat. constant ammonium uptake by diatoms [mmol n/m3]
! mu1 = phytoplankton (fla & dia) mortality rate [1/day]
! k5 = half sat. constant phy. mortality (fla & dia) [mmol n/m3]
! mu11 = pico-phytoplankton mortality rate [1/day]
! mu12 = nano-phytoplankton mortality rate [1/day]
! k5 = half sat. constant phy. mortality [mmol n/m3]
! gamma = exudation fraction [-]
! w_p1 = flagellate settling velocity [m/day]
! w_p2 = diatom settling velocity [m/day]
......@@ -36,8 +37,9 @@
! g2max = maximum mesozooplankton ingestion rate [1/day]
! k3 = half saturation constant ingestion [mmol n/m3]
! beta = grazing efficiency [-]
! mu2 = maximum zooplankton loss rate (mcz & msz) [1/day]
! k6 = half saturation zooplankton loss (mcz & msz) [mmol n/m3]
! mu21 = maximum micro-zooplankton loss rate [1/day]
! mu22 = maximum meso-zooplankton loss rate [1/day]
! delta = fractional zooplankton loss to LDON (mcz & msz) [-]
! epsi = fractional zooplankton loss to ammonium (mcz & msz) [-]
! r11 = mcz grazing preference on flagellates [-]
......@@ -78,11 +80,12 @@
ka1 = 0.8
kn2 = 1.0
ka2 = 0.8
mu1 = 0.05
mu11 = 0.05
mu12 = 0.05
k5 = 0.2
gamma = 0.05
w_p1 =-0.10
w_p2 =-0.38
w_p1 =-0.00
w_p2 =-0.00
theta = 0.0
w_p1min =-0.01
w_p1max =-0.10
......@@ -92,7 +95,8 @@
g2max = 1.0
k3 = 1.0
beta = 0.625
mu2 = 0.3
mu21 = 0.3
mu22 = 0.3
k6 = 0.2
delta = 0.1
epsi = 0.70
......
......@@ -79,7 +79,8 @@
REALTYPE :: ka1 = 0.8
REALTYPE :: kn2 = 0.2
REALTYPE :: ka2 = 0.8
REALTYPE :: mu1 = 0.05
REALTYPE :: mu11 = 0.05
REALTYPE :: mu12 = 0.05
REALTYPE :: k5 = 0.2
REALTYPE :: gamma = 0.05
REALTYPE :: w_p1 = -0.5
......@@ -88,7 +89,8 @@
REALTYPE :: g2max = 1.0
REALTYPE :: k3 = 1.0
REALTYPE :: beta = 0.625
REALTYPE :: mu2 = 0.3
REALTYPE :: mu21 = 0.3
REALTYPE :: mu22 = 0.3
REALTYPE :: k6 = 0.2
REALTYPE :: delta = 0.1
REALTYPE :: epsi = 0.70
......@@ -144,8 +146,8 @@
p1_init,p2_init,z1_init,z2_init, &
b_init,d_init,l_init, &
p0,z0,b0,vp1,alpha1,inib1,vp2,alpha2,inib2, &
kn1,ka1,kn2,ka2,mu1,k5,gamma,w_p1,w_p2, &
g1max,g2max,k3,beta,mu2,k6,delta,epsi, &
kn1,ka1,kn2,ka2,mu11,mu12,k5,gamma,w_p1,w_p2, &
g1max,g2max,k3,beta,mu21,mu22,k6,delta,epsi, &
r11,r12,r13,r21,r22,r23,r24, &
vb,k4,mu3,eta,mu4,w_d,kc,mu5, &
theta,w_p1max,w_p1min,w_p2min,w_p2max
......@@ -179,8 +181,10 @@
vp1 = vp1 /secs_pr_day
vp2 = vp2 /secs_pr_day
vb = vb /secs_pr_day
mu1 = mu1 /secs_pr_day
mu2 = mu2 /secs_pr_day
mu11 = mu11 /secs_pr_day
mu12 = mu12 /secs_pr_day
mu21 = mu21 /secs_pr_day
mu22 = mu22 /secs_pr_day
mu3 = mu3 /secs_pr_day
mu4 = mu4 /secs_pr_day
mu5 = mu5 /secs_pr_day
......@@ -391,10 +395,10 @@
zz = _ZERO_
add = _ZERO_
do i=nlev,1,-1
add=add+0.5*h(i)*(cc(p1,i)+cc(p2,i)+p0)
add=add+0.5*h(i)*(cc(p1,i)+cc(p2,i)+2*p0)
zz=zz+0.5*h(i)
par(i)=rad(nlev)*(1.-aa)*exp(-zz/g2)*exp(-kc*add)
add=add+0.5*h(i)*(cc(p1,i)+cc(p2,i)+p0)
add=add+0.5*h(i)*(cc(p1,i)+cc(p2,i)+2*p0)
zz=zz+0.5*h(i)
if (bioshade_feedback) bioshade_(i)=exp(-kc*add)
end do
......@@ -503,8 +507,11 @@
! Original author(s): Hans Burchard, Karsten Bolding
!
! !LOCAL VARIABLES:
REALTYPE :: fac1,fac2,fac3,minal,qn1,qa1,qn2,qa2
REALTYPE :: ps1,ps2,ff1,ff2 !CHG1
REALTYPE :: amr(1:nlev)
REALTYPE :: hmr(1:nlev)
REALTYPE :: fac1,fac2,minal,qn1,qa1,qn2,qa2
REALTYPE :: ps1,ps2,ff1,ff2
REALTYPE :: Ea,Eh,kBeV,T0
integer :: i,j,ci
!EOP
!-----------------------------------------------------------------------
......@@ -555,17 +562,31 @@
minal=min(cc(a,ci),eta*cc(l,ci))
! Temperature-dependent function for zooplankton grazing (for test purposes)
! This function should come from thermodynamical arguments
!fac3 = max(0.0,tanh(0.5*(T(ci)+1.9)))
fac3 = 1.0
! Temperature-dependent metabolic rates
! Gillooly et al. (2002)
Eh = 0.65 ! Activation energy for heterotrophs (eV)
Ea = 0.32 ! Activation energy for autotrophs (eV)
kBeV = 8.62e-5 ! Boltzmann constant (eV K-1)
T0 = 273.15-1.9 ! Temperature at which metabolism stops
! The mass ratio between pico-phytoplankton (p1, 1 um) and
! nano- and micro-phytoplankton (p2, 10 um) is approximately 1:1e3,
! which translates into a ratio of (1e3)**0.25 = 5.62 between
! their respective metabolic rates, according to the MTE. The same
! ratio is applied to micro-zooplankton (100 um) versus
! meso-zooplankton (1000 um).
! Autotrophs
amr(ci) = max(0.0,0.25*exp(Ea/(kBeV*T0**2)*(T(ci)/(1+T(ci)/T0))))
! Heterotrophs
hmr(ci) = max(0.0,0.25*exp(Eh/(kBeV*T0**2)*(T(ci)/(1+T(ci)/T0))))
! Light and nutrient limitation factors
lumlim(ci) =ff1
nitlim(ci) =qn1
ammlim(ci) =qa1
! Nutrient uptake by flagellates and diatoms
! Nutrient uptake by pico- and nano-phytoplankton
dd(n,p1,ci) =ff1*qn1*(cc(p1,ci)+p0)
dd(a,p1,ci) =ff1*qa1*(cc(p1,ci)+p0)
dd(n,p2,ci) =ff2*qn2*(cc(p2,ci)+p0)
......@@ -574,37 +595,40 @@
dd(p1,l,ci) =gamma*ff1*(qn1+qa1)*cc(p1,ci)
dd(p2,l,ci) =gamma*ff2*(qn2+qa2)*cc(p2,ci)
dd(p1,d,ci) =mu1*(cc(p1,ci)+p0)/(k5+cc(p1,ci)+p0)*cc(p1,ci) &
+fac3*(1.-beta)*cc(p1,ci)**2*(g1max*r11*fac1+g2max*r21*fac2)
dd(p2,d,ci) =mu1*(cc(p2,ci)+p0)/(k5+cc(p2,ci)+p0)*cc(p2,ci) &
+fac3*(1.-beta)*g2max*r21*cc(p2,ci)**2*fac2
dd(p1,d,ci) =mu11*(cc(p1,ci)+p0)/(k5+cc(p1,ci)+p0)*cc(p1,ci) &
+(1.-beta)*cc(p1,ci)**2*(g1max*r11*fac1+g2max*r21*fac2)
dd(p2,d,ci) =mu12*(cc(p2,ci)+p0)/(k5+cc(p2,ci)+p0)*cc(p2,ci) &
+(1.-beta)*g2max*r21*cc(p2,ci)**2*fac2
dd(b,d,ci) =fac3*(1.-beta)*g1max*r12*cc(b,ci)**2*fac1
dd(b,d,ci) =(1.-beta)*g1max*r12*cc(b,ci)**2*fac1
dd(p1,z1,ci)=fac3*beta*g1max*r11*cc(p1,ci)**2*fac1
dd(b,z1,ci) =fac3*beta*g1max*r12*cc(b,ci)**2*fac1
dd(d,z1,ci) =fac3*beta*g1max*r13*cc(d,ci)**2*fac1
dd(p1,z1,ci)=beta*g1max*r11*cc(p1,ci)**2*fac1
dd(b,z1,ci) =beta*g1max*r12*cc(b,ci)**2*fac1
dd(d,z1,ci) =beta*g1max*r13*cc(d,ci)**2*fac1
dd(p1,z2,ci)=fac3*beta*g2max*r21*cc(p1,ci)**2*fac2
dd(p2,z2,ci)=fac3*beta*g2max*r22*cc(p2,ci)**2*fac2
dd(d,z2,ci) =fac3*beta*g2max*r23*cc(d,ci)**2*fac2
dd(z1,z2,ci)=fac3*beta*g2max*r24*cc(z1,ci)**2*fac2
dd(p1,z2,ci)=beta*g2max*r21*cc(p1,ci)**2*fac2
dd(p2,z2,ci)=beta*g2max*r22*cc(p2,ci)**2*fac2
dd(d,z2,ci) =beta*g2max*r23*cc(d,ci)**2*fac2
dd(z1,z2,ci)=beta*g2max*r24*cc(z1,ci)**2*fac2
dd(b,a,ci) =mu3*cc(b,ci)
dd(d,l,ci) =mu4*cc(d,ci)
dd(a,n,ci) =mu5*cc(a,ci)
dd(z1,d,ci) =(1.-epsi-delta)*mu2*(cc(z1,ci)+z0)/(k6+cc(z1,ci)+z0)*cc(z1,ci)
dd(z1,a,ci) =epsi*mu2*(cc(z1,ci)+z0)/(k6+cc(z1,ci)+z0)*cc(z1,ci)
dd(z1,l,ci) =delta*mu2*(cc(z1,ci)+z0)/(k6+cc(z1,ci)+z0)*cc(z1,ci)
dd(z1,d,ci) =(1.-epsi-delta)*mu21*(cc(z1,ci)+z0)/(k6+cc(z1,ci)+z0)*cc(z1,ci)
dd(z1,a,ci) =epsi*mu21*(cc(z1,ci)+z0)/(k6+cc(z1,ci)+z0)*cc(z1,ci)
dd(z1,l,ci) =delta*mu21*(cc(z1,ci)+z0)/(k6+cc(z1,ci)+z0)*cc(z1,ci)
dd(z2,d,ci) =(1.-epsi-delta)*mu2*(cc(z2,ci)+z0)/(k6+cc(z2,ci)+z0)*cc(z2,ci)
dd(z2,a,ci) =epsi*mu2*(cc(z2,ci)+z0)/(k6+cc(z2,ci)+z0)*cc(z2,ci)
dd(z2,l,ci) =delta*mu2*(cc(z2,ci)+z0)/(k6+cc(z2,ci)+z0)*cc(z2,ci)
dd(z2,d,ci) =(1.-epsi-delta)*mu22*(cc(z2,ci)+z0)/(k6+cc(z2,ci)+z0)*cc(z2,ci)
dd(z2,a,ci) =epsi*mu22*(cc(z2,ci)+z0)/(k6+cc(z2,ci)+z0)*cc(z2,ci)
dd(z2,l,ci) =delta*mu22*(cc(z2,ci)+z0)/(k6+cc(z2,ci)+z0)*cc(z2,ci)
dd(a,b,ci) =vb*minal/(k4+minal+cc(l,ci))*(cc(b,ci)+b0)
dd(l,b,ci) =vb*cc(l,ci)/(k4+minal+cc(l,ci))*(cc(b,ci)+b0)
ws(p1,ci) = w_p1
ws(p2,ci) = w_p2
do i=1,numc
do j=1,numc
pp(i,j,ci)=dd(j,i,ci)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment