Commit 4aaa729a57892cea0d1ad749511a03711b14c12c

Authored by dumoda01
1 parent 4e171ca6
Exists in master and in 1 other branch snow

Le dependance en temperature du modele bio_ismer est maintenant activable via un…

…e variable logique (mte) dans la namelist bio_ismer.nml. Quatre nouveaux coefficients peuvent egalement etre modifies dans la namelist (ca1, ca2, ch1, ch2). Une description de ces parametres a ete integree dans nml/bio_ismer.nml.
Showing 2 changed files with 112 additions and 89 deletions   Show diff stats
nml/bio_ismer.nml
@@ -10,19 +10,21 @@ @@ -10,19 +10,21 @@
10 ! z2_init = initial meso-zooplakton concentration [mmol n/m3] 10 ! z2_init = initial meso-zooplakton concentration [mmol n/m3]
11 ! b_init = initial bacteria concentration [mmol n/m3] 11 ! b_init = initial bacteria concentration [mmol n/m3]
12 ! d_init = initial detritus concentration [mmol n/m3] 12 ! d_init = initial detritus concentration [mmol n/m3]
13 -! n_init = *** see obs.nml *** [mmol n/m3]  
14 -! a_init = *** see obs.nml *** [mmol n/m3]  
15 ! l_init = initial LDON concentration [mmol n/m3] 13 ! l_init = initial LDON concentration [mmol n/m3]
16 ! p0 = minimum phytoplankton concentration [mmol n/m3] 14 ! p0 = minimum phytoplankton concentration [mmol n/m3]
17 ! z0 = minimum zooplakton concentration [mmol n/m3] 15 ! z0 = minimum zooplakton concentration [mmol n/m3]
18 ! b0 = minimum bacteria concentration [mmol n/m3] 16 ! b0 = minimum bacteria concentration [mmol n/m3]
19 -! theta = phytoplancton buoyancy parameter [m3 day/(mmol N)] !CHG2 17 +! mte = if .true. use temperature-dependent metabolic rates
  18 +! ca1 = temp-dependence coeff for p1
  19 +! ca2 = temp-dependence coeff for p2
  20 +! ch1 = temp-dependence coeff for z1
  21 +! ch2 = temp-dependence coeff for z2
20 ! vp1 = maximum flagellate uptake rate by flagellates [1/day] 22 ! vp1 = maximum flagellate uptake rate by flagellates [1/day]
21 ! vp2 = maximum diatom uptake rate by diatoms [1/day] 23 ! vp2 = maximum diatom uptake rate by diatoms [1/day]
22 ! alpha1 = slope of the flagellate PI-curve [m2/(W day)] 24 ! alpha1 = slope of the flagellate PI-curve [m2/(W day)]
23 ! alpha2 = slope of the diatom PI-curve [m2/(W day)] 25 ! alpha2 = slope of the diatom PI-curve [m2/(W day)]
24 -! inib1 = inhibition slope of the flagellate PI-curve (pos.) [m2/(W day)] !CHG1  
25 -! inib2 = inhibition slope of the PI-curve (pos.) [m2/(W day)] !CHG1 26 +! inib1 = inhibition slope of the flagellate PI-curve (pos.) [m2/(W day)]
  27 +! inib2 = inhibition slope of the PI-curve (pos.) [m2/(W day)]
26 ! kn1 = half sat. constant nitrate uptake by fla [mmol n/m3] 28 ! kn1 = half sat. constant nitrate uptake by fla [mmol n/m3]
27 ! ka1 = half sat. constant ammonium uptake by fla [mmol n/m3] 29 ! ka1 = half sat. constant ammonium uptake by fla [mmol n/m3]
28 ! kn2 = half sat. constant nitrate uptake by diatoms [mmol n/m3] 30 ! kn2 = half sat. constant nitrate uptake by diatoms [mmol n/m3]
@@ -33,6 +35,7 @@ @@ -33,6 +35,7 @@
33 ! gamma = exudation fraction [-] 35 ! gamma = exudation fraction [-]
34 ! w_p1 = flagellate settling velocity [m/day] 36 ! w_p1 = flagellate settling velocity [m/day]
35 ! w_p2 = diatom settling velocity [m/day] 37 ! w_p2 = diatom settling velocity [m/day]
  38 +! theta = phytoplancton buoyancy parameter [m3 day/(mmol N)]
36 ! g1max = maximum microzooplankton ingestion rate [1/day] 39 ! g1max = maximum microzooplankton ingestion rate [1/day]
37 ! g2max = maximum mesozooplankton ingestion rate [1/day] 40 ! g2max = maximum mesozooplankton ingestion rate [1/day]
38 ! k3 = half saturation constant ingestion [mmol n/m3] 41 ! k3 = half saturation constant ingestion [mmol n/m3]
@@ -70,11 +73,16 @@ @@ -70,11 +73,16 @@
70 p0 = 0.0001 73 p0 = 0.0001
71 z0 = 0.0001 74 z0 = 0.0001
72 b0 = 0.0001 75 b0 = 0.0001
73 - vp1 = 1.0 76 + mte = .true.
  77 + ca1 = 3.61
  78 + ca2 = 14.58
  79 + ch1 = 3.265
  80 + ch2 = 24.923
  81 + vp1 = 0.02
74 vp2 = 0.8 82 vp2 = 0.8
75 - alpha1 = 0.04 83 + alpha1 = 0.02
76 alpha2 = 0.04 84 alpha2 = 0.04
77 - inib1 = 0.006 85 + inib1 = 0.0
78 inib2 = 0.006 86 inib2 = 0.006
79 kn1 = 1.0 87 kn1 = 1.0
80 ka1 = 0.8 88 ka1 = 0.8
@@ -84,7 +92,7 @@ @@ -84,7 +92,7 @@
84 mu12 = 0.05 92 mu12 = 0.05
85 k5 = 0.2 93 k5 = 0.2
86 gamma = 0.05 94 gamma = 0.05
87 - w_p1 =-0.00 95 + w_p1 =-0.38
88 w_p2 =-0.00 96 w_p2 =-0.00
89 theta = 0.0 97 theta = 0.0
90 w_p1min =-0.01 98 w_p1min =-0.01
src/extras/bio/bio_ismer.F90
@@ -64,6 +64,11 @@ @@ -64,6 +64,11 @@
64 REALTYPE :: p0 = 0.0 64 REALTYPE :: p0 = 0.0
65 REALTYPE :: z0 = 0.0 65 REALTYPE :: z0 = 0.0
66 REALTYPE :: b0 = 0.0 66 REALTYPE :: b0 = 0.0
  67 + LOGICAL :: mte = .true.
  68 + REALTYPE :: ca1 = 3.61
  69 + REALTYPE :: ca2 = 14.58
  70 + REALTYPE :: ch1 = 3.265
  71 + REALTYPE :: ch2 = 24.923
67 REALTYPE :: vp1 = 1.5 72 REALTYPE :: vp1 = 1.5
68 REALTYPE :: alpha1 = 0.065 73 REALTYPE :: alpha1 = 0.065
69 REALTYPE :: inib1 = 0.05 74 REALTYPE :: inib1 = 0.05
@@ -146,11 +151,13 @@ @@ -146,11 +151,13 @@
146 p1_init,p2_init,z1_init,z2_init, & 151 p1_init,p2_init,z1_init,z2_init, &
147 b_init,d_init,l_init, & 152 b_init,d_init,l_init, &
148 p0,z0,b0,vp1,alpha1,inib1,vp2,alpha2,inib2, & 153 p0,z0,b0,vp1,alpha1,inib1,vp2,alpha2,inib2, &
149 - kn1,ka1,kn2,ka2,mu11,mu12,k5,gamma,w_p1,w_p2, & 154 + kn1,ka1,kn2,ka2,mu11,mu12,k5,gamma,w_p1,w_p2, &
150 g1max,g2max,k3,beta,mu21,mu22,k6,delta,epsi, & 155 g1max,g2max,k3,beta,mu21,mu22,k6,delta,epsi, &
151 r11,r12,r13,r21,r22,r23,r24, & 156 r11,r12,r13,r21,r22,r23,r24, &
152 vb,k4,mu3,eta,mu4,w_d,kc,mu5, & 157 vb,k4,mu3,eta,mu4,w_d,kc,mu5, &
153 - theta,w_p1max,w_p1min,w_p2min,w_p2max 158 + theta,w_p1max,w_p1min,w_p2min,w_p2max, &
  159 + mte,ca1,ca2,ch1,ch2
  160 +
154 !EOP 161 !EOP
155 !----------------------------------------------------------------------- 162 !-----------------------------------------------------------------------
156 !BOC 163 !BOC
@@ -207,6 +214,12 @@ @@ -207,6 +214,12 @@
207 write(10,901) mu5 214 write(10,901) mu5
208 write(10,901) w_d 215 write(10,901) w_d
209 write(10,901) kc 216 write(10,901) kc
  217 + if (mte) then
  218 + write(10,901) ca1
  219 + write(10,901) ca2
  220 + write(10,901) ch1
  221 + write(10,901) ch2
  222 + endif
210 223
211 224
212 900 format (a,f8.5) 225 900 format (a,f8.5)
@@ -542,8 +555,8 @@ @@ -542,8 +555,8 @@
542 ! Original author(s): Hans Burchard, Karsten Bolding 555 ! Original author(s): Hans Burchard, Karsten Bolding
543 ! 556 !
544 ! !LOCAL VARIABLES: 557 ! !LOCAL VARIABLES:
545 - REALTYPE :: amr1(1:nlev),amr2(1:nlev)  
546 - REALTYPE :: hmr1(1:nlev),hmr2(1:nlev) 558 + REALTYPE :: amr1,amr2
  559 + REALTYPE :: hmr1,hmr2
547 REALTYPE :: fac1,fac2,fac3,fac4 560 REALTYPE :: fac1,fac2,fac3,fac4
548 REALTYPE :: minal,qn1,qa1,qn2,qa2 561 REALTYPE :: minal,qn1,qa1,qn2,qa2
549 REALTYPE :: ps1,ps2,ff1,ff2 562 REALTYPE :: ps1,ps2,ff1,ff2
@@ -559,21 +572,61 @@ @@ -559,21 +572,61 @@
559 572
560 do ci=1,nlev 573 do ci=1,nlev
561 574
562 -!CHG1  
563 -! Smith (1936) - saturation (default)  
564 -! ff= vp*alpha*par(ci)/sqrt(vp**2+alpha**2*par(ci)**2)  
565 -! Blackman (1919)  
566 -! if (par(ci) .lt. vp/alpha) then  
567 -! ff=alpha*par(ci)  
568 -! else  
569 -! ff=vp  
570 -! endif  
571 -! Steele (1962) - inhibition  
572 -! ff= vp*((par(ci)/I_opt)*exp(1-(par(ci)/I_opt)))  
573 -! Parker (1974) - inhibition  
574 -! ff= vp*((par(ci)/I_opt)*exp(1-(par(ci)/I_opt)))**2  
575 -! Platt et al. (1980) - inhibition  
576 - 575 + if (mte) then
  576 + ! Temperature-dependent metabolic rates
  577 + ! Gillooly et al. (2002)
  578 + Eh = 0.65 ! Activation energy for heterotrophs (eV)
  579 + Ea = 0.32 ! Activation energy for autotrophs (eV)
  580 + kBeV = 8.62e-5 ! Boltzmann constant (eV K-1)
  581 + T0 = 273.15-1.9 ! Temperature at which metabolism stops
  582 +
  583 + ! metabolic rate coefficient (a(T0) in Gillooly et al. 2002 in kg^1/4 s^-1)
  584 + ! they are tuned to
  585 + ca1 = 3.61 ! pico-phytoplankton
  586 + ca2 = 14.58 ! micro-phytoplankton
  587 + ch1 = 3.265 ! micro-zooplankton
  588 + ch2 = 24.923 ! meso-zooplankton
  589 +
  590 + ! The mass ratio between pico-phytoplankton (p1) and
  591 + ! nano- and micro-phytoplankton (p2) is amratio,
  592 + ! which translates into a ratio of fac3=amratio**0.25 between
  593 + ! their respective metabolic rates, according to the MTE.
  594 + ! The same applies to micro-zooplankton (z1) versus
  595 + ! meso-zooplankton (z2) through fac4=hmratio**0.25.
  596 + amratio = 200.0
  597 + hmratio = 1000.0
  598 +
  599 + fac3 = amratio**0.25
  600 + fac4 = hmratio**0.25
  601 +
  602 + ! Autotroph metabolic rate
  603 + amr1 = max(0.0,ca1*0.25*exp(Ea/(kBeV*T0**2)*(T(ci)/(1+T(ci)/T0))) )
  604 + amr2 = max(0.0,ca2*0.25*exp(Ea/(kBeV*T0**2)*(T(ci)/(1+T(ci)/T0)))/fac3)
  605 +
  606 + ! Heterotroph metabolic rate
  607 + hmr1 = max(0.0,ch1*0.25*exp(Eh/(kBeV*T0**2)*(T(ci)/(1+T(ci)/T0))) )
  608 + hmr2 = max(0.0,ch2*0.25*exp(Eh/(kBeV*T0**2)*(T(ci)/(1+T(ci)/T0)))/fac4)
  609 + else
  610 + amr1 = 1.0
  611 + amr2 = 1.0
  612 + hmr1 = 1.0
  613 + hmr2 = 1.0
  614 + endif
  615 +
  616 + ! Smith (1936) - saturation (default)
  617 + ! ff= vp*alpha*par(ci)/sqrt(vp**2+alpha**2*par(ci)**2)
  618 + ! Blackman (1919)
  619 + ! if (par(ci) .lt. vp/alpha) then
  620 + ! ff=alpha*par(ci)
  621 + ! else
  622 + ! ff=vp
  623 + ! endif
  624 + ! Steele (1962) - inhibition
  625 + ! ff= vp*((par(ci)/I_opt)*exp(1-(par(ci)/I_opt)))
  626 + ! Parker (1974) - inhibition
  627 + ! ff= vp*((par(ci)/I_opt)*exp(1-(par(ci)/I_opt)))**2
  628 +
  629 + ! Platt et al. (1980) - inhibition
577 ! Light limitation factor (PI curve) 630 ! Light limitation factor (PI curve)
578 ps1= vp1/((alpha1/(alpha1+inib1))*(alpha1/(alpha1+inib1))**(inib1/alpha1)) 631 ps1= vp1/((alpha1/(alpha1+inib1))*(alpha1/(alpha1+inib1))**(inib1/alpha1))
579 ff1= ps1*(1.-exp(-1.*alpha1*par(ci)/ps1))*exp(-1.*inib1*par(ci)/ps1) 632 ff1= ps1*(1.-exp(-1.*alpha1*par(ci)/ps1))*exp(-1.*inib1*par(ci)/ps1)
@@ -599,88 +652,50 @@ @@ -599,88 +652,50 @@
599 652
600 minal=min(cc(a,ci),eta*cc(l,ci)) 653 minal=min(cc(a,ci),eta*cc(l,ci))
601 654
602 - ! Temperature-dependent metabolic rates  
603 - ! Gillooly et al. (2002)  
604 - Eh = 0.65 ! Activation energy for heterotrophs (eV)  
605 - Ea = 0.32 ! Activation energy for autotrophs (eV)  
606 - kBeV = 8.62e-5 ! Boltzmann constant (eV K-1)  
607 - T0 = 273.15-1.9 ! Temperature at which metabolism stops  
608 -  
609 - ! metabolic rate coefficient (a(T0) in Gillooly et al. 2002 in kg^1/4 s^-1)  
610 - ! they are tuned to  
611 - ca1 = 3.61 ! pico-phytoplankton  
612 - ca2 = 14.58 ! micro-phytoplankton  
613 - ch1 = 3.265 ! micro-zooplankton  
614 - ch2 = 24.923 ! meso-zooplankton  
615 -  
616 - ! The mass ratio between pico-phytoplankton (p1) and  
617 - ! nano- and micro-phytoplankton (p2) is amratio,  
618 - ! which translates into a ratio of fac3=amratio**0.25 between  
619 - ! their respective metabolic rates, according to the MTE.  
620 - ! The same applies to micro-zooplankton (z1) versus  
621 - ! meso-zooplankton (z2) through fac4=hmratio**0.25.  
622 - amratio = 200.0  
623 - hmratio = 1000.0  
624 -  
625 - fac3 = amratio**0.25  
626 - fac4 = hmratio**0.25  
627 -  
628 - ! Autotroph metabolic rate  
629 - !amr1(ci) = 1.0  
630 - !amr2(ci) = 1.0  
631 - amr1(ci) = max(0.0,ca1*0.25*exp(Ea/(kBeV*T0**2)*(T(ci)/(1+T(ci)/T0))) )  
632 - amr2(ci) = max(0.0,ca2*0.25*exp(Ea/(kBeV*T0**2)*(T(ci)/(1+T(ci)/T0)))/fac3)  
633 -  
634 - ! Heterotroph metabolic rate  
635 - !hmr1(ci) = 1.0  
636 - !hmr2(ci) = 1.0  
637 - hmr1(ci) = max(0.0,ch1*0.25*exp(Eh/(kBeV*T0**2)*(T(ci)/(1+T(ci)/T0))) )  
638 - hmr2(ci) = max(0.0,ch2*0.25*exp(Eh/(kBeV*T0**2)*(T(ci)/(1+T(ci)/T0)))/fac4)  
639 -  
640 ! Light and nutrient limitation factors 655 ! Light and nutrient limitation factors
641 - lumlim1(ci) =ff1 656 + lumlim1(ci) =amr1*ff1
642 nitlim1(ci) =qn1 657 nitlim1(ci) =qn1
643 ammlim1(ci) =qa1 658 ammlim1(ci) =qa1
644 - lumlim2(ci) =ff2 659 + lumlim2(ci) =amr2*ff2
645 nitlim2(ci) =qn2 660 nitlim2(ci) =qn2
646 ammlim2(ci) =qa2 661 ammlim2(ci) =qa2
647 662
648 ! Nutrient uptake by pico- and nano-phytoplankton 663 ! Nutrient uptake by pico- and nano-phytoplankton
649 - dd(n,p1,ci) =amr1(ci)*ff1*qn1*(cc(p1,ci)+p0)  
650 - dd(a,p1,ci) =amr1(ci)*ff1*qa1*(cc(p1,ci)+p0)  
651 - dd(n,p2,ci) =amr2(ci)*ff2*qn2*(cc(p2,ci)+p0)  
652 - dd(a,p2,ci) =amr2(ci)*ff2*qa2*(cc(p2,ci)+p0) 664 + dd(n,p1,ci) =amr1*ff1*qn1*(cc(p1,ci)+p0)
  665 + dd(a,p1,ci) =amr1*ff1*qa1*(cc(p1,ci)+p0)
  666 + dd(n,p2,ci) =amr2*ff2*qn2*(cc(p2,ci)+p0)
  667 + dd(a,p2,ci) =amr2*ff2*qa2*(cc(p2,ci)+p0)
653 668
654 - dd(p1,l,ci) =amr1(ci)*gamma*ff1*(qn1+qa1)*cc(p1,ci)  
655 - dd(p2,l,ci) =amr2(ci)*gamma*ff2*(qn2+qa2)*cc(p2,ci) 669 + dd(p1,l,ci) =amr1*gamma*ff1*(qn1+qa1)*cc(p1,ci)
  670 + dd(p2,l,ci) =amr2*gamma*ff2*(qn2+qa2)*cc(p2,ci)
656 671
657 - dd(p1,d,ci) =amr1(ci)*mu11*(cc(p1,ci)+p0)/(k5+cc(p1,ci)+p0)*cc(p1,ci) & 672 + dd(p1,d,ci) =amr1*mu11*(cc(p1,ci)+p0)/(k5+cc(p1,ci)+p0)*cc(p1,ci) &
658 +(1.-beta)*cc(p1,ci)**2*(g1max*r11*fac1+g2max*r21*fac2) 673 +(1.-beta)*cc(p1,ci)**2*(g1max*r11*fac1+g2max*r21*fac2)
659 - dd(p2,d,ci) =amr2(ci)*mu12*(cc(p2,ci)+p0)/(k5+cc(p2,ci)+p0)*cc(p2,ci) & 674 + dd(p2,d,ci) =amr2*mu12*(cc(p2,ci)+p0)/(k5+cc(p2,ci)+p0)*cc(p2,ci) &
660 +(1.-beta)*g2max*r21*cc(p2,ci)**2*fac2 675 +(1.-beta)*g2max*r21*cc(p2,ci)**2*fac2
661 676
662 dd(b,d,ci) =(1.-beta)*g1max*r12*cc(b,ci)**2*fac1 677 dd(b,d,ci) =(1.-beta)*g1max*r12*cc(b,ci)**2*fac1
663 678
664 - dd(p1,z1,ci)=hmr1(ci)*beta*g1max*r11*cc(p1,ci)**2*fac1  
665 - dd(b,z1,ci) =hmr1(ci)*beta*g1max*r12*cc(b,ci)**2*fac1  
666 - dd(d,z1,ci) =hmr1(ci)*beta*g1max*r13*cc(d,ci)**2*fac1 679 + dd(p1,z1,ci)=hmr1*beta*g1max*r11*cc(p1,ci)**2*fac1
  680 + dd(b,z1,ci) =hmr1*beta*g1max*r12*cc(b,ci)**2*fac1
  681 + dd(d,z1,ci) =hmr1*beta*g1max*r13*cc(d,ci)**2*fac1
667 682
668 - dd(p1,z2,ci)=hmr2(ci)*beta*g2max*r21*cc(p1,ci)**2*fac2  
669 - dd(p2,z2,ci)=hmr2(ci)*beta*g2max*r22*cc(p2,ci)**2*fac2  
670 - dd(d,z2,ci) =hmr2(ci)*beta*g2max*r23*cc(d,ci)**2*fac2  
671 - dd(z1,z2,ci)=hmr2(ci)*beta*g2max*r24*cc(z1,ci)**2*fac2 683 + dd(p1,z2,ci)=hmr2*beta*g2max*r21*cc(p1,ci)**2*fac2
  684 + dd(p2,z2,ci)=hmr2*beta*g2max*r22*cc(p2,ci)**2*fac2
  685 + dd(d,z2,ci) =hmr2*beta*g2max*r23*cc(d,ci)**2*fac2
  686 + dd(z1,z2,ci)=hmr2*beta*g2max*r24*cc(z1,ci)**2*fac2
672 687
673 dd(b,a,ci) =mu3*cc(b,ci) 688 dd(b,a,ci) =mu3*cc(b,ci)
674 dd(d,l,ci) =mu4*cc(d,ci) 689 dd(d,l,ci) =mu4*cc(d,ci)
675 dd(a,n,ci) =mu5*cc(a,ci) 690 dd(a,n,ci) =mu5*cc(a,ci)
676 691
677 - dd(z1,d,ci) =hmr1(ci)*(1.-epsi-delta)*mu21*(cc(z1,ci)+z0)/(k6+cc(z1,ci)+z0)*cc(z1,ci)  
678 - dd(z1,a,ci) =hmr1(ci)*epsi*mu21*(cc(z1,ci)+z0)/(k6+cc(z1,ci)+z0)*cc(z1,ci)  
679 - dd(z1,l,ci) =hmr1(ci)*delta*mu21*(cc(z1,ci)+z0)/(k6+cc(z1,ci)+z0)*cc(z1,ci) 692 + dd(z1,d,ci) =hmr1*(1.-epsi-delta)*mu21*(cc(z1,ci)+z0)/(k6+cc(z1,ci)+z0)*cc(z1,ci)
  693 + dd(z1,a,ci) =hmr1*epsi*mu21*(cc(z1,ci)+z0)/(k6+cc(z1,ci)+z0)*cc(z1,ci)
  694 + dd(z1,l,ci) =hmr1*delta*mu21*(cc(z1,ci)+z0)/(k6+cc(z1,ci)+z0)*cc(z1,ci)
680 695
681 - dd(z2,d,ci) =hmr2(ci)*(1.-epsi-delta)*mu22*(cc(z2,ci)+z0)/(k6+cc(z2,ci)+z0)*cc(z2,ci)  
682 - dd(z2,a,ci) =hmr2(ci)*epsi*mu22*(cc(z2,ci)+z0)/(k6+cc(z2,ci)+z0)*cc(z2,ci)  
683 - dd(z2,l,ci) =hmr2(ci)*delta*mu22*(cc(z2,ci)+z0)/(k6+cc(z2,ci)+z0)*cc(z2,ci) 696 + dd(z2,d,ci) =hmr2*(1.-epsi-delta)*mu22*(cc(z2,ci)+z0)/(k6+cc(z2,ci)+z0)*cc(z2,ci)
  697 + dd(z2,a,ci) =hmr2*epsi*mu22*(cc(z2,ci)+z0)/(k6+cc(z2,ci)+z0)*cc(z2,ci)
  698 + dd(z2,l,ci) =hmr2*delta*mu22*(cc(z2,ci)+z0)/(k6+cc(z2,ci)+z0)*cc(z2,ci)
684 699
685 dd(a,b,ci) =vb*minal/(k4+minal+cc(l,ci))*(cc(b,ci)+b0) 700 dd(a,b,ci) =vb*minal/(k4+minal+cc(l,ci))*(cc(b,ci)+b0)
686 dd(l,b,ci) =vb*cc(l,ci)/(k4+minal+cc(l,ci))*(cc(b,ci)+b0) 701 dd(l,b,ci) =vb*cc(l,ci)/(k4+minal+cc(l,ci))*(cc(b,ci)+b0)