gotmturb.nml 11.1 KB
Newer Older
dumoda01's avatar
dumoda01 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
!$Id: gotmturb.proto,v 1.1.1.1 2003/03/11 13:38:58 kbk Exp $
!-------------------------------------------------------------------------------

!-------------------------------------------------------------------------------
! What type of equations are solved in the turbulence model?
!
! turb_method      -> type of turbulence closure
!
!                  0: convective adjustment
!                  1: analytical eddy visc. and diff. profiles, not coded yet
!                  2: turbulence Model calculating TKE and length scale
!                     (specify stability function below)
!                  3: second-order model (see "scnd" namelist below)
!                 99: KPP model (requires "kpp.inp" with specifications)
!
!
! tke_method       -> type of equation for TKE
!
!                  1: algebraic equation
!                  2: dynamic equation (k-epsilon style)
!                  3: dynamic equation (Mellor-Yamada style)
!
!
! len_scale_method -> type of model for dissipative length scale
!
!                  1: parabolic shape
!                  2: triangle shape
!                  3: Xing and Davies [1995]
!                  4: Robert and Ouellet [1987]
!                  5: Blackadar (two boundaries) [1962]
!                  6: Bougeault and Andre [1986]
!                  7: Eifler and Schrimpf (ISPRAMIX) [1992]
!                  8: dynamic dissipation rate equation
!                  9: dynamic Mellor-Yamada q^2l-equation
!                 10: generic length scale (GLS)
!
!
! stab_method      -> type of stability function
!
!                  1: constant stability functions
!                  2: Munk and Anderson [1954]
!                  3: Schumann and Gerz [1995]
!                  4: Eifler and Schrimpf [1992]
!
!-------------------------------------------------------------------------------
 &turbulence
  turb_method=     3
  tke_method=      2
  len_scale_method=8
  stab_method=     3
 /

!-------------------------------------------------------------------------------
! What boundary conditions are used?
!
! k_ubc, k_lbc     -> upper and lower boundary conditions
!                    for k-equation
!                  0: prescribed BC
!                  1: flux BC
!
! psi_ubc, psi_lbc -> upper and lower boundary conditions
!                     for the length-scale equation (e.g.
!                     epsilon, kl, omega, GLS)
!                  0: prescribed BC
!                  1: flux BC
!
!
! ubc_type         -> type of upper boundary layer
!                  0: viscous sublayer (not yet impl.)
!                  1: logarithmic law of the wall
!                  2: tke-injection (breaking waves)
!
! lbc_type         -> type of lower boundary layer
!                  0: viscous sublayer (not yet impl.)
!                  1: logarithmic law of the wall
!
!-------------------------------------------------------------------------------
 &bc
  k_ubc=           1
  k_lbc=           1
  psi_ubc=         1
  psi_lbc=         1
  ubc_type=        1
  lbc_type=        1
 /

!-------------------------------------------------------------------------------
!What turbulence parameters have been described?
!
! cm0_fix          ->   value of cm0 for turb_method=2
! Prandtl0_fix     ->   value of the turbulent Prandtl-number for stab_method=1-4
! cw               ->   constant of the wave-breaking model
!                       (Craig & Banner (1994) use cw=100)
! compute_kappa    ->   compute von Karman constant from model parameters
! kappa            ->   the desired von Karman constant (if compute_kappa=.true.)
! compute_c3       ->   compute c3 (E3 for Mellor-Yamada) for given Ri_st
! Ri_st            ->   the desired steady-state Richardson number (if compute_c3=.true.)
! length_lim       ->   apply length scale limitation (see Galperin et al. 1988)
! galp             ->   coef. for length scale limitation
! const_num        ->   minimum eddy diffusivity (only with turb_method=0)
! const_nuh        ->   minimum heat diffusivity (only with turb_method=0)
! k_min            ->   minimun TKE
! eps_min          ->   minimum dissipation rate
! kb_min           ->  minimun buoyancy variance
! epsb_min         ->  minimum buoyancy variance destruction rate
!
!-------------------------------------------------------------------------------
 &turb_param
  cm0_fix=         0.5477
  Prandtl0_fix=    0.74
  cw=              100.
  compute_kappa=   .false.
  kappa=           0.4
  compute_c3=      .true.
  ri_st=           0.25
  length_lim=      .true.
  galp=            0.53
  const_num=       5.e-4
  const_nuh=       5.e-4
  k_min=           1.e-10
  eps_min=         1.e-12
  kb_min=          1.e-10
  epsb_min=        1.e-14
 /

!-------------------------------------------------------------------------------
! The generic model (Umlauf & Burchard, J. Mar. Res., 2003)
!
! This part is active only, when len_scale_method=10 has been set.
!
! compute_param    -> compute the model parameters:
!                     if this is .false., you have to set all
!                     model parameters (m,n,cpsi1,...) explicitly
!                     if this is .true., all model parameters
!                     set by you (except m) will be ignored and
!                     re-computed from kappa, d, alpha, etc.
!                     (see Umlauf&Burchard 2002)
!
!  m:              -> exponent for k
!  n:              -> exponent for l
!  p:              -> exponent for cm0
!
!  Examples:
!
!  k-epsilon (Rodi 1987)          :       m=3/2, n=-1, p=3
!  k-omega (Umlauf et al. 2003)   :       m=1/2, n=-1, p=-1
!
! cpsi1            -> emp. coef. in psi equation
! cpsi2            -> emp. coef. in psi equation
! cpsi3minus       -> cpsi3 for stable stratification
! cpsi3plus        -> cpsi3 for unstable stratification
! sig_kpsi         -> Schmidt number for TKE diffusivity
! sig_psi          -> Schmidt number for psi diffusivity
!
!-------------------------------------------------------------------------------
 &generic
  compute_param=   .false.
  gen_m=           1.0
  gen_n=           -0.67
  gen_p=           3.0
  cpsi1=           1.
  cpsi2=           1.22
  cpsi3minus=      0.05
  cpsi3plus =      1.0
  sig_kpsi=        0.8
  sig_psi=         1.07
  gen_d=           -1.2
  gen_alpha=       -2.0
  gen_l=           0.2
 /

!-------------------------------------------------------------------------------
! The k-epsilon model (Rodi 1987)
!
! This part is active only, when len_scale_method=8 has been set.
!
! ce1              -> emp. coef. in diss. eq.
! ce2              -> emp. coef. in diss. eq.
! ce3minus         -> ce3 for stable stratification, overwritten if compute_c3=.true.
! ce3plus          -> ce3 for unstable stratification (Rodi 1987: ce3plus=1.0)
! sig_k            -> Schmidt number for TKE diffusivity
! sig_e            -> Schmidt number for diss. diffusivity
! sig_peps         -> if .true. -> the wave breaking parameterisation suggested
!                     by Burchard (JPO 31, 2001, 3133-3145) will be used.
!-------------------------------------------------------------------------------
 &keps
  ce1=             1.44
  ce2=             1.92
  ce3minus=        -0.4
  ce3plus=         1.0
  sig_k=           1.
  sig_e=           1.3
  sig_peps=        .false.
 /

!-------------------------------------------------------------------------------
! The Mellor-Yamada model (Mellor & Yamada 1982)
!
! This part is active only, when len_scale_method=9 has been set!
!
! e1               -> coef. in MY q**2 l equation
! e2               -> coef. in MY q**2 l equation
! e3               -> coef. in MY q**2 l equation, overwritten if compute_c3=.true.
! sq               -> turbulent diffusivities of q**2 (= 2k)
! sl               -> turbulent diffusivities of q**2 l
! my_length        -> prescribed barotropic lengthscale in q**2 l equation of MY
!                  1: parabolic
!                  2: triangular
!                  3: lin. from surface
! new_constr       -> stabilisation of Mellor-Yamada stability functions
!                     according to Burchard & Deleersnijder (2001)
!                     (if .true.)
!
!-------------------------------------------------------------------------------
 &my
  e1=              1.8
  e2=              1.33
  e3=              1.8
  sq=              0.2
  sl=              0.2
  my_length=       3
  new_constr=      .false.
 /

!-------------------------------------------------------------------------------
! The second-order model
!
! scnd_method      -> type of second-order model
!                  1: EASM with quasi-equilibrium
!                  2: EASM with weak equilibrium, buoy.-variance algebraic
!                  3: EASM with weak equilibrium, buoy.-variance from PDE
!
! kb_method        -> type of equation for buoyancy variance
!
!                  1: algebraic equation for buoyancy variance
!                  2: PDE                for buoyancy variance
!
!
! epsb_method      -> type of equation for variance destruction
!
!                  1: algebraic equation for variance destruction
!                  2: PDE                for variance destruction
!
!
! scnd_coeff       -> coefficients of second-order model
!
!                  0: read the coefficients from this file
!                  1: coefficients of Gibson and Launder (1978)
!                  2: coefficients of Mellor and Yamada (1982)
!                  3: coefficients of Kantha and Clayson (1994)
!                  4: coefficients of Luyten et al. (1996)
!                  5: coefficients of Canuto et al. (2001) (version A)
!                  6: coefficients of Canuto et al. (2001) (version B)
!                  7: coefficients of Cheng et al. (2002)
!
!-------------------------------------------------------------------------------
 &scnd
  scnd_method=     1
  kb_method=       1
  epsb_method=     1
  scnd_coeff=      7
  cc1=             3.6
  cc2=             0.8
  cc3=             1.2
  cc4=             1.2
  cc5=             0.0
  cc6=             0.3
  ct1=             3.28
  ct2=             0.4
  ct3=             0.4
  ct4=             0.0
  ct5=             0.4
  ctt=             0.8
 /

!-------------------------------------------------------------------------------
! The internal wave model
!
! iw_model         -> method to compute internal wave mixing
!                  0: no internal waves mixing parameterisation
!                  1: Mellor 1989 internal wave mixing
!                  2: Large et al. 1994 internal wave mixing
!
! alpha            -> coeff. for Mellor IWmodel (0: no IW, 0.7 Mellor 1989)
!
! The following six empirical parameters are used for the
! Large et al. 1994 shear instability and internal wave breaking
! parameterisations (iw_model = 2, all viscosities are in m**2/s):
!
! klimiw           -> critcal value of TKE
! rich_cr          -> critical Richardson number for shear instability
! numshear         -> background diffusivity for shear instability
! numiw            -> background viscosity for internal wave breaking
! nuhiw            -> background diffusivity for internal wave breaking
!-------------------------------------------------------------------------------
 &iw
  iw_model=        0
  alpha=           0.7
  klimiw=          1e-6
  rich_cr=         0.7
  numshear=        5.e-3
  numiw=           1.e-4
  nuhiw=           1.e-5
 /