Commit 2b149458 authored by Marion Bandet's avatar Marion Bandet

mise a jour

parent 121292c7
......@@ -54,43 +54,60 @@
<p>Matlab script used to do the analysis is <strong>RadialVeloCompa_Sept2013_HFR_ADCP_WERA_ADCPcorrected_v2.m</strong></p>
<p>Steps of the algorithm:</p>
<p>1- we choose a site to analyze, either PAO (site 1) or PAB (site 2)</p>
<div class="figure align-center">
<img alt="_images/sites.png" src="_images/sites.png" />
<p class="caption">location of HFRs domain in the St Lawrence estuary</p>
</div>
<p>2- we load the bathymetry and the HFR sites&#8217;coordinates</p>
<p>3- we specify if we use the &#8220;old&#8221; or &#8220;new&#8221; calibrations. Usually &#8220;New&#8221;.</p>
<p>4- we load IML-4 ADCP data (2013) and gps data</p>
<p>5- we make a list of all the HFR files available for the site of interest.</p>
<p>6- we analyze the ADCP data (bin 2 only to get near-surface data):</p>
<blockquote>
<div><p>We look for the indices of the ADCP time vector corresponding to the time period of interest (here 01 to 30 September 2013).</p>
<p>For each index, we look for the ADCP position (xadcp,yadcp)(via the gps coordinates).</p>
<p>We then look for the positions 15min before and 15min after.</p>
<p>We estimate the mean drift of the ADCP within these 30 minutes (Umean_adcp_u, Umean_adcp_v and U_mean_adcp (total)).</p>
<p>We find the radial orientation at the ADCP position given by xadcp,yadcp: azimuth in degrees from HFR site to adcp position</p>
<p>We project U_mean_adcp onto the radial direction to get the radial current components (ur_adcp_proj, vr_adcp_proj).</p>
<p>We store all the meaningful parameters into a structure named adcp.</p>
<div><ul class="simple">
<li>We look for the indices of the ADCP time vector corresponding to the time period of interest (here 01 to 30 September 2013).</li>
<li>For each index, we look for the ADCP position (xadcp,yadcp)(via the gps coordinates).</li>
<li>We then look for the positions 15min before and 15min after.</li>
<li>We estimate the mean drift of the ADCP within these 30 minutes (Umean_adcp_u, Umean_adcp_v and U_mean_adcp (total)).</li>
<li>We find the radial orientation at the ADCP position given by xadcp,yadcp: azimuth in degrees from HFR site to adcp position</li>
<li>We project U_mean_adcp onto the radial direction to get the radial current components (ur_adcp_proj, vr_adcp_proj).</li>
<li>We store all the meaningful parameters into a structure named adcp.</li>
</ul>
</div></blockquote>
<p>7- We analyze the HFR data:</p>
<blockquote>
<div><p>We look for the indices of the HFR time vector corresponding to the time period of interest (here 01 to 30 September 2013)</p>
<p>For each index, we load the corresponding HFR file (i.e. 20132440000_pao.mat). Each file contains a grid (X,Y) with radial currents at each grid point (Ur), a corresponding time vector (t) and the angle and distance from the site (theta,r).</p>
<div><ul class="simple">
<li>We look for the indices of the HFR time vector corresponding to the time period of interest (here 01 to 30 September 2013)</li>
<li>For each index, we load the corresponding HFR file (i.e. 20132440000_pao.mat). Each file contains a grid (X,Y) with radial currents at each grid point (Ur), a corresponding time vector (t) and the angle and distance from the site (theta,r).</li>
</ul>
</div></blockquote>
<div class="figure align-center">
<img alt="_images/explecoveragegridallpoint.png" src="_images/explecoveragegridallpoint.png" />
</div>
<div class="figure align-center">
<img alt="_images/Radial_ADCPbin2_HFR_PAO_version5_Sept2013.png" src="_images/Radial_ADCPbin2_HFR_PAO_version5_Sept2013.png" />
<p class="caption">Hourly radial currents from ADCP bin 2 and HFR WERA at PAO - September 2013</p>
<div class="legend">
Superimposed are the 48-h averages</div>
</div>
<p>[[Fichier:gridwithnan_adcp.png]]</p>
<blockquote>
<div><p>We find the HFR Radial velocity at this position and project it onto zonal and meridional components.</p>
<p>We store all the meaningful parameters into a structure named radar.</p>
</div></blockquote>
<div class="figure align-center">
<img alt="_images/explecoveragegrid2.png" src="_images/explecoveragegrid2.png" />
<p class="caption">We find the HFR Radial velocity at this position and project it onto zonal and meridional components.</p>
<div class="legend">
We store all the meaningful parameters into a structure named radar.</div>
</div>
<p>This analysis allows us to compare radial velocity components from each HFR site with the ADCP components.</p>
</div>
<div class="section" id="hfr-direction">
<h1>HFR direction<a class="headerlink" href="#hfr-direction" title="Permalink to this headline"></a></h1>
<p>To verify that the HFR looks in the right direction:</p>
<p>For each time step of the time period of interest, we compute the distance from the HFR site to each grid point. We select the grid points that are at the same range from the HFR site than the grid point closest to the ADCP.</p>
<p>[[Fichier:rangeADCP.png]]</p>
<div class="figure align-center">
<img alt="_images/explecoveragegrid_rangeADCP.png" src="_images/explecoveragegrid_rangeADCP.png" />
</div>
<div class="figure align-center">
<img alt="_images/explecoveragegrid_rangeADCP2.png" src="_images/explecoveragegrid_rangeADCP2.png" />
</div>
<p>For each of these grid point (in cyan in the figure), we compute the azimuth the the site coordinates and we extract the radial velocity (total) and its components (zonal and meridional).</p>
<p>We store all the meaningful parameters into a structure named range.</p>
<p>Results from the whole analysis are stored, for example, under:
......
......@@ -7,6 +7,11 @@ Steps of the algorithm:
1- we choose a site to analyze, either PAO (site 1) or PAB (site 2)
.. figure:: figures/sites.png
:align: center
location of HFRs domain in the St Lawrence estuary
2- we load the bathymetry and the HFR sites'coordinates
3- we specify if we use the "old" or "new" calibrations. Usually "New".
......@@ -17,25 +22,32 @@ Steps of the algorithm:
6- we analyze the ADCP data (bin 2 only to get near-surface data):
We look for the indices of the ADCP time vector corresponding to the time period of interest (here 01 to 30 September 2013).
* We look for the indices of the ADCP time vector corresponding to the time period of interest (here 01 to 30 September 2013).
For each index, we look for the ADCP position (xadcp,yadcp)(via the gps coordinates).
* For each index, we look for the ADCP position (xadcp,yadcp)(via the gps coordinates).
We then look for the positions 15min before and 15min after.
* We then look for the positions 15min before and 15min after.
We estimate the mean drift of the ADCP within these 30 minutes (Umean_adcp_u, Umean_adcp_v and U_mean_adcp (total)).
* We estimate the mean drift of the ADCP within these 30 minutes (Umean_adcp_u, Umean_adcp_v and U_mean_adcp (total)).
We find the radial orientation at the ADCP position given by xadcp,yadcp: azimuth in degrees from HFR site to adcp position
* We find the radial orientation at the ADCP position given by xadcp,yadcp: azimuth in degrees from HFR site to adcp position
We project U_mean_adcp onto the radial direction to get the radial current components (ur_adcp_proj, vr_adcp_proj).
* We project U_mean_adcp onto the radial direction to get the radial current components (ur_adcp_proj, vr_adcp_proj).
We store all the meaningful parameters into a structure named adcp.
* We store all the meaningful parameters into a structure named adcp.
7- We analyze the HFR data:
We look for the indices of the HFR time vector corresponding to the time period of interest (here 01 to 30 September 2013)
* We look for the indices of the HFR time vector corresponding to the time period of interest (here 01 to 30 September 2013)
* For each index, we load the corresponding HFR file (i.e. 20132440000_pao.mat). Each file contains a grid (X,Y) with radial currents at each grid point (Ur), a corresponding time vector (t) and the angle and distance from the site (theta,r).
.. figure:: figures/explecoveragegridallpoint.png
:align: center
For each index, we load the corresponding HFR file (i.e. 20132440000_pao.mat). Each file contains a grid (X,Y) with radial currents at each grid point (Ur), a corresponding time vector (t) and the angle and distance from the site (theta,r).
.. figure:: figures/Radial_ADCPbin2_HFR_PAO_version5_Sept2013.png
:align: center
......@@ -50,7 +62,8 @@ Steps of the algorithm:
We then look for the HFR grid point nearest the ADCP position at the time of interest.
[[Fichier:gridwithnan_adcp.png]]
.. figure:: figures/explecoveragegrid2.png
:align: center
We find the HFR Radial velocity at this position and project it onto zonal and meridional components.
......@@ -67,7 +80,12 @@ To verify that the HFR looks in the right direction:
For each time step of the time period of interest, we compute the distance from the HFR site to each grid point. We select the grid points that are at the same range from the HFR site than the grid point closest to the ADCP.
[[Fichier:rangeADCP.png]]
.. figure:: figures/explecoveragegrid_rangeADCP.png
:align: center
.. figure:: figures/explecoveragegrid_rangeADCP2.png
:align: center
For each of these grid point (in cyan in the figure), we compute the azimuth the the site coordinates and we extract the radial velocity (total) and its components (zonal and meridional).
......
......@@ -133,27 +133,27 @@ Outputs of **WERAcalibration.m** for PAO site are available here: `calibrationPA
+=============+=================+=============+
| 1 | 0 | 0 |
+-------------+-----------------+-------------+
| 2 | -0.6181 | 12.5669 |
| 2 | -0.6181 | 2.2270 |
+-------------+-----------------+-------------+
| 3 | -19.9027 | 39.2831 |
| 3 | -19.9027 | -20.8291 |
+-------------+-----------------+-------------+
| 4 | 1.2299 | 16.4368 |
| 4 | 1.2299 | 1.2548 |
+-------------+-----------------+-------------+
| 5 | -21.2304 | 48.6882 |
| 5 | -21.2304 | -15.9611 |
+-------------+-----------------+-------------+
| 6 | 10.7207 | 32.0365 |
| 6 | 10.7207 | 12.7500 |
+-------------+-----------------+-------------+
| 7 | -5.2161 | 46.1277 |
| 7 | -5.2161 | 6.0602 |
+-------------+-----------------+-------------+
| 8 | -14.8695 | 86.8683 |
| 8 | -14.8695 | -14.5626 |
+-------------+-----------------+-------------+
| 9 | -2.5658 | 82.3474 |
| 9 | -2.5658 | 1.1416 |
+-------------+-----------------+-------------+
| 10 | -16.1023 | 112.4072 |
| 10 | -16.1023 | -14.8303 |
+-------------+-----------------+-------------+
| 11 | -6.7589 | 132.1750 |
| 11 | -6.7589 | -10.0689 |
+-------------+-----------------+-------------+
| 12 | -9.7778 | 153.9098 |
| 12 | -9.7778 | -13.8845 |
+-------------+-----------------+-------------+
The new phase values were saved under **calibration_pao_29OCT2014.wera**.
......@@ -171,27 +171,27 @@ Outputs of WERAcalibration.m for PAB site are available here: `calibrationPAB`_
+=============+=================+=============+
| 1 | 0 | 0 |
+-------------+-----------------+-------------+
| 2 | 1.0514 | 19.6031 |
| 2 | 1.0514 | -19.6031 |
+-------------+-----------------+-------------+
| 3 | 8.3719 | -77.3093 |
| 3 | 8.3719 | 77.3093 |
+-------------+-----------------+-------------+
| 4 | 2.0496 | 2.8669 |
| 4 | 2.0496 | -2.8669 |
+-------------+-----------------+-------------+
| 5 | 13.5527 | -29.2102 |
| 5 | 13.5527 | 29.2102 |
+-------------+-----------------+-------------+
| 6 | -3.0394 | 1.9353 |
| 6 | -3.0394 | -1.9353 |
+-------------+-----------------+-------------+
| 7 | 0.9866 | 30.6625 |
| 7 | 0.9866 | -30.6625 |
+-------------+-----------------+-------------+
| 8 | -2.9561 | 7.2423 |
| 8 | -2.9561 | -7.2423 |
+-------------+-----------------+-------------+
| 9 | -1.5691 | 28.9055 |
| 9 | -1.5691 | -28.9055 |
+-------------+-----------------+-------------+
| 10 | -2.4549 | 24.0200 |
| 10 | -2.4549 | -24.0200 |
+-------------+-----------------+-------------+
| 11 | 1.4106 | 12.9370 |
| 11 | 1.4106 | -12.9370 |
+-------------+-----------------+-------------+
| 12 | -2.7529 | 7.4966 |
| 12 | -2.7529 | -7.4966 |
+-------------+-----------------+-------------+
The new phase values were saved under **calibration_pab_30OCT2014.wera**.
......
......@@ -81,3 +81,21 @@ reprocess calibrations with new, corrected phases:
- transfer with ssh of old calibrations results
- work on MEOPAR HQP section for NCE renewal application
**2 NOV 2015:**
- work on pb with new phases PAO: check shell scripts on WERA serveur
- try with 1 day (2013244): seems ok
- process by hand each day: ./do_postprocess_SORT_newCalib.sh -s PAO -y 2013273
**3 NOV 2015:**
- finish analysis by hand: take .SORT and output .crad_pol_lst
=> do_process_SORT_pol 2013244 2013273 /home/wera/data1/PAO
**5 NOV 2015:**
- ftp transfer of .crad_pol_lst to local hard Drive
=> ./do_filetransferssh.sh 2013245 2013273
rsync -v -e ssh wera@132.215.11.14:~/data1/PAO/${JOUR}/results/new/*.crad_pol_lst /run/media/bandma01/SeagateWireless/MEOPAR/DATA/HFRs/WERAs/PAO/optimisationPAO/version5_PAO_old_nofullcal/checkNewCalib/
- use radiallst2uv.m
**the new phases are so closed to the old ones that there isn't any real differences in the radial currents**
......@@ -181,47 +181,47 @@
</tr>
<tr class="row-even"><td>2</td>
<td>-0.6181</td>
<td>12.5669</td>
<td>2.2270</td>
</tr>
<tr class="row-odd"><td>3</td>
<td>-19.9027</td>
<td>39.2831</td>
<td>-20.8291</td>
</tr>
<tr class="row-even"><td>4</td>
<td>1.2299</td>
<td>16.4368</td>
<td>1.2548</td>
</tr>
<tr class="row-odd"><td>5</td>
<td>-21.2304</td>
<td>48.6882</td>
<td>-15.9611</td>
</tr>
<tr class="row-even"><td>6</td>
<td>10.7207</td>
<td>32.0365</td>
<td>12.7500</td>
</tr>
<tr class="row-odd"><td>7</td>
<td>-5.2161</td>
<td>46.1277</td>
<td>6.0602</td>
</tr>
<tr class="row-even"><td>8</td>
<td>-14.8695</td>
<td>86.8683</td>
<td>-14.5626</td>
</tr>
<tr class="row-odd"><td>9</td>
<td>-2.5658</td>
<td>82.3474</td>
<td>1.1416</td>
</tr>
<tr class="row-even"><td>10</td>
<td>-16.1023</td>
<td>112.4072</td>
<td>-14.8303</td>
</tr>
<tr class="row-odd"><td>11</td>
<td>-6.7589</td>
<td>132.1750</td>
<td>-10.0689</td>
</tr>
<tr class="row-even"><td>12</td>
<td>-9.7778</td>
<td>153.9098</td>
<td>-13.8845</td>
</tr>
</tbody>
</table>
......@@ -248,47 +248,47 @@
</tr>
<tr class="row-even"><td>2</td>
<td>1.0514</td>
<td>19.6031</td>
<td>-19.6031</td>
</tr>
<tr class="row-odd"><td>3</td>
<td>8.3719</td>
<td>-77.3093</td>
<td>77.3093</td>
</tr>
<tr class="row-even"><td>4</td>
<td>2.0496</td>
<td>2.8669</td>
<td>-2.8669</td>
</tr>
<tr class="row-odd"><td>5</td>
<td>13.5527</td>
<td>-29.2102</td>
<td>29.2102</td>
</tr>
<tr class="row-even"><td>6</td>
<td>-3.0394</td>
<td>1.9353</td>
<td>-1.9353</td>
</tr>
<tr class="row-odd"><td>7</td>
<td>0.9866</td>
<td>30.6625</td>
<td>-30.6625</td>
</tr>
<tr class="row-even"><td>8</td>
<td>-2.9561</td>
<td>7.2423</td>
<td>-7.2423</td>
</tr>
<tr class="row-odd"><td>9</td>
<td>-1.5691</td>
<td>28.9055</td>
<td>-28.9055</td>
</tr>
<tr class="row-even"><td>10</td>
<td>-2.4549</td>
<td>24.0200</td>
<td>-24.0200</td>
</tr>
<tr class="row-odd"><td>11</td>
<td>1.4106</td>
<td>12.9370</td>
<td>-12.9370</td>
</tr>
<tr class="row-even"><td>12</td>
<td>-2.7529</td>
<td>7.4966</td>
<td>-7.4966</td>
</tr>
</tbody>
</table>
......
......@@ -186,6 +186,21 @@
- investigate on wera server if possible mistake in shell scripts
- transfer with ssh of old calibrations results
- work on MEOPAR HQP section for NCE renewal application</p>
<p><strong>2 NOV 2015:</strong>
- work on pb with new phases PAO: check shell scripts on WERA serveur
- try with 1 day (2013244): seems ok
- process by hand each day: ./do_postprocess_SORT_newCalib.sh -s PAO -y 2013273</p>
<p><strong>3 NOV 2015:</strong>
- finish analysis by hand: take .SORT and output .crad_pol_lst</p>
<blockquote>
<div>=&gt; do_process_SORT_pol 2013244 2013273 /home/wera/data1/PAO</div></blockquote>
<p><strong>5 NOV 2015:</strong>
- ftp transfer of .crad_pol_lst to local hard Drive</p>
<blockquote>
<div>=&gt; ./do_filetransferssh.sh 2013245 2013273</div></blockquote>
<p>rsync -v -e ssh <a class="reference external" href="mailto:wera&#37;&#52;&#48;132&#46;215&#46;11&#46;14">wera<span>&#64;</span>132<span>&#46;</span>215<span>&#46;</span>11<span>&#46;</span>14</a>:~/data1/PAO/${JOUR}/results/new/<a href="#id1"><span class="problematic" id="id2">*</span></a>.crad_pol_lst /run/media/bandma01/SeagateWireless/MEOPAR/DATA/HFRs/WERAs/PAO/optimisationPAO/version5_PAO_old_nofullcal/checkNewCalib/
- use radiallst2uv.m</p>
<p><strong>the new phases are so closed to the old ones that there isn&#8217;t any real differences in the radial currents</strong></p>
</div>
......
This diff is collapsed.
......@@ -7,6 +7,11 @@ Steps of the algorithm:
1- we choose a site to analyze, either PAO (site 1) or PAB (site 2)
.. figure:: figures/sites.png
:align: center
location of HFRs domain in the St Lawrence estuary
2- we load the bathymetry and the HFR sites'coordinates
3- we specify if we use the "old" or "new" calibrations. Usually "New".
......@@ -17,25 +22,32 @@ Steps of the algorithm:
6- we analyze the ADCP data (bin 2 only to get near-surface data):
We look for the indices of the ADCP time vector corresponding to the time period of interest (here 01 to 30 September 2013).
* We look for the indices of the ADCP time vector corresponding to the time period of interest (here 01 to 30 September 2013).
For each index, we look for the ADCP position (xadcp,yadcp)(via the gps coordinates).
* For each index, we look for the ADCP position (xadcp,yadcp)(via the gps coordinates).
We then look for the positions 15min before and 15min after.
* We then look for the positions 15min before and 15min after.
We estimate the mean drift of the ADCP within these 30 minutes (Umean_adcp_u, Umean_adcp_v and U_mean_adcp (total)).
* We estimate the mean drift of the ADCP within these 30 minutes (Umean_adcp_u, Umean_adcp_v and U_mean_adcp (total)).
We find the radial orientation at the ADCP position given by xadcp,yadcp: azimuth in degrees from HFR site to adcp position
* We find the radial orientation at the ADCP position given by xadcp,yadcp: azimuth in degrees from HFR site to adcp position
We project U_mean_adcp onto the radial direction to get the radial current components (ur_adcp_proj, vr_adcp_proj).
* We project U_mean_adcp onto the radial direction to get the radial current components (ur_adcp_proj, vr_adcp_proj).
We store all the meaningful parameters into a structure named adcp.
* We store all the meaningful parameters into a structure named adcp.
7- We analyze the HFR data:
We look for the indices of the HFR time vector corresponding to the time period of interest (here 01 to 30 September 2013)
* We look for the indices of the HFR time vector corresponding to the time period of interest (here 01 to 30 September 2013)
* For each index, we load the corresponding HFR file (i.e. 20132440000_pao.mat). Each file contains a grid (X,Y) with radial currents at each grid point (Ur), a corresponding time vector (t) and the angle and distance from the site (theta,r).
.. figure:: figures/explecoveragegridallpoint.png
:align: center
For each index, we load the corresponding HFR file (i.e. 20132440000_pao.mat). Each file contains a grid (X,Y) with radial currents at each grid point (Ur), a corresponding time vector (t) and the angle and distance from the site (theta,r).
.. figure:: figures/Radial_ADCPbin2_HFR_PAO_version5_Sept2013.png
:align: center
......@@ -50,7 +62,8 @@ Steps of the algorithm:
We then look for the HFR grid point nearest the ADCP position at the time of interest.
[[Fichier:gridwithnan_adcp.png]]
.. figure:: figures/explecoveragegrid2.png
:align: center
We find the HFR Radial velocity at this position and project it onto zonal and meridional components.
......@@ -67,7 +80,12 @@ To verify that the HFR looks in the right direction:
For each time step of the time period of interest, we compute the distance from the HFR site to each grid point. We select the grid points that are at the same range from the HFR site than the grid point closest to the ADCP.
[[Fichier:rangeADCP.png]]
.. figure:: figures/explecoveragegrid_rangeADCP.png
:align: center
.. figure:: figures/explecoveragegrid_rangeADCP2.png
:align: center
For each of these grid point (in cyan in the figure), we compute the azimuth the the site coordinates and we extract the radial velocity (total) and its components (zonal and meridional).
......
......@@ -133,27 +133,27 @@ Outputs of **WERAcalibration.m** for PAO site are available here: `calibrationPA
+=============+=================+=============+
| 1 | 0 | 0 |
+-------------+-----------------+-------------+
| 2 | -0.6181 | 12.5669 |
| 2 | -0.6181 | 2.2270 |
+-------------+-----------------+-------------+
| 3 | -19.9027 | 39.2831 |
| 3 | -19.9027 | -20.8291 |
+-------------+-----------------+-------------+
| 4 | 1.2299 | 16.4368 |
| 4 | 1.2299 | 1.2548 |
+-------------+-----------------+-------------+
| 5 | -21.2304 | 48.6882 |
| 5 | -21.2304 | -15.9611 |
+-------------+-----------------+-------------+
| 6 | 10.7207 | 32.0365 |
| 6 | 10.7207 | 12.7500 |
+-------------+-----------------+-------------+
| 7 | -5.2161 | 46.1277 |
| 7 | -5.2161 | 6.0602 |
+-------------+-----------------+-------------+
| 8 | -14.8695 | 86.8683 |
| 8 | -14.8695 | -14.5626 |
+-------------+-----------------+-------------+
| 9 | -2.5658 | 82.3474 |
| 9 | -2.5658 | 1.1416 |
+-------------+-----------------+-------------+
| 10 | -16.1023 | 112.4072 |
| 10 | -16.1023 | -14.8303 |
+-------------+-----------------+-------------+
| 11 | -6.7589 | 132.1750 |
| 11 | -6.7589 | -10.0689 |
+-------------+-----------------+-------------+
| 12 | -9.7778 | 153.9098 |
| 12 | -9.7778 | -13.8845 |
+-------------+-----------------+-------------+
The new phase values were saved under **calibration_pao_29OCT2014.wera**.
......@@ -171,27 +171,27 @@ Outputs of WERAcalibration.m for PAB site are available here: `calibrationPAB`_
+=============+=================+=============+
| 1 | 0 | 0 |
+-------------+-----------------+-------------+
| 2 | 1.0514 | 19.6031 |
| 2 | 1.0514 | -19.6031 |
+-------------+-----------------+-------------+
| 3 | 8.3719 | -77.3093 |
| 3 | 8.3719 | 77.3093 |
+-------------+-----------------+-------------+
| 4 | 2.0496 | 2.8669 |
| 4 | 2.0496 | -2.8669 |
+-------------+-----------------+-------------+
| 5 | 13.5527 | -29.2102 |
| 5 | 13.5527 | 29.2102 |
+-------------+-----------------+-------------+
| 6 | -3.0394 | 1.9353 |
| 6 | -3.0394 | -1.9353 |
+-------------+-----------------+-------------+
| 7 | 0.9866 | 30.6625 |
| 7 | 0.9866 | -30.6625 |
+-------------+-----------------+-------------+
| 8 | -2.9561 | 7.2423 |
| 8 | -2.9561 | -7.2423 |
+-------------+-----------------+-------------+
| 9 | -1.5691 | 28.9055 |
| 9 | -1.5691 | -28.9055 |
+-------------+-----------------+-------------+
| 10 | -2.4549 | 24.0200 |
| 10 | -2.4549 | -24.0200 |
+-------------+-----------------+-------------+
| 11 | 1.4106 | 12.9370 |
| 11 | 1.4106 | -12.9370 |
+-------------+-----------------+-------------+
| 12 | -2.7529 | 7.4966 |
| 12 | -2.7529 | -7.4966 |
+-------------+-----------------+-------------+
The new phase values were saved under **calibration_pab_30OCT2014.wera**.
......
......@@ -81,3 +81,21 @@ reprocess calibrations with new, corrected phases:
- transfer with ssh of old calibrations results
- work on MEOPAR HQP section for NCE renewal application
**2 NOV 2015:**
- work on pb with new phases PAO: check shell scripts on WERA serveur
- try with 1 day (2013244): seems ok
- process by hand each day: ./do_postprocess_SORT_newCalib.sh -s PAO -y 2013273
**3 NOV 2015:**
- finish analysis by hand: take .SORT and output .crad_pol_lst
=> do_process_SORT_pol 2013244 2013273 /home/wera/data1/PAO
**5 NOV 2015:**
- ftp transfer of .crad_pol_lst to local hard Drive
=> ./do_filetransferssh.sh 2013245 2013273
rsync -v -e ssh wera@132.215.11.14:~/data1/PAO/${JOUR}/results/new/*.crad_pol_lst /run/media/bandma01/SeagateWireless/MEOPAR/DATA/HFRs/WERAs/PAO/optimisationPAO/version5_PAO_old_nofullcal/checkNewCalib/
- use radiallst2uv.m
**the new phases are so closed to the old ones that there isn't any real differences in the radial currents**
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment